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A domain decomposition method (DDM) is presented for the solution of the time-
harmonic electromagnetic scattering problem by inhomogeneous 3-D objects. The
computational domain is partitioned into concentric subdomains on the interfaces
of which Robin-type transmission conditions are prescribed. On the outer boundary
terminating the computational domain, the radiation condition is accounted for by
employing an integral equation (IE) formulation. The DDM decouples the interior
problems, that correspond to the solution of Maxwell’s equations inside each subdo-
main and are formulated by using a finite element method, from the exterior problem
solved by employing the IE. It has been shown that the solutions of this DDM algo-
rithm converge to those of the original problem. A particular IE is used that allows
the implementation of a very simple and fully iterative solver. The main advantage
offered by this technique is a reduction in memory requirements. Various numerical
examples are presented that illustrate its potential.c© 2001 Academic Press
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I. INTRODUCTION

The scattering problem of a time-harmonic electromagnetic wave from penetrable com-
plex 3-D objects can be accurately solved by employing a hybrid finite element (FE) and
integral equation (IE) method [1–5]. A surfaceS encloses the inhomogeneous, possibly
anisotropic, medium constituting the object.S is the outer boundary of the computational
domain inside which the fields are formulated using the finite element method. Prescribed on
S, the IE constitutes an exact radiation condition that accounts for the propagation in the un-
bounded and homogeneous surrounding space. Both IE and FE formulations are coupled by
enforcing the continuity of the tangential components of the fields onS. The discretization
process leads to a linear system constituted, essentially, by a sparse FE matrix and a dense
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IE matrix. However, the solution of this system becomes computationally intensive and
requires large computer resources when the size of the object is electrically large.

A domain decomposition method (DDM) allows the decomposition of a large prob-
lem into several coupled subproblems that can be solved independently, thus reducing the
memory storage requirements. It has drawn the attention of a number of researchers in the
electromagnetic community, who have devised several methods to deal with the scattering
problem. In particular, two classes of methodologies may be identified. In the first one [6–9],
no iterations are required but the solutions may not be unique on account of the fact that
some subproblems may involve Dirichlet or Neumann boundary conditions. Methodolo-
gies of the second class [10–14] are based on an iterative DDM originally proposed in [10,
11]: The fields in two adjacent subdomains are connected by a mixed boundary condition,
termed transmission condition (TC), that ensures the uniqueness of the solutions and their
convergence to those of the original problem. To improve the efficiency of the TC and,
consequently, to reduce the number of iterations, this method has been later adapted to a
particular, “onion-like,” partition of the computational domain into concentric subdomains
circumscribing the object [13, 14], and the convergence of the corresponding modified algo-
rithm has been established in [15]. On account of its local character, an absorbing boundary
condition (ABC) that approximates the exact radiation condition has been used onS to
further reduce the computing time and memory storage. However, scattering by a stealth
object, the bistatic radar cross section (RCS) of which exhibits a large angular dynamic
range, can be accurately calculated in the high frequency domain only if the boundaryS
is placed sufficiently far away from the object, requiring for that reason a large number of
subdomains [14, 16]. Hence, it turns out to be necessary to have at one’s disposal an “exact”
method where the IE is substituted to the ABC.

In this paper, we investigate the numerical capabilities of the hybrid FE–IE DDM pro-
posed in [15]: The unbounded surrounding space in the region exterior toS is considered
as an additional subdomain connected to the interior FE region by a TC, while keeping for
the latter the subdomains’ partition. It offers, a priori, the following advantages:

—The solutions of the FE and IE systems are performed separately: it only remains to
choose an IE that can be solved iteratively in an efficient manner.

—The FE system is solved by using the DDM as in [14]. Each partial FE system corre-
sponding to one subdomain is solved with a standard conjuguate gradient (CG).

The organization of this paper is as follows. In Section II we outline the 3-D electromag-
netic scattering problem to be solved and the DDM algorithm employed. The IE formulation,
originally proposed by Despr´es [17] and later improved [18], is presented in Section III. Its
main advantage resides in the fact that only Hermitian positive definite matrices need to be
inverted. A few numerical results display its efficiency for the particular case of scattering
by a nonpenetrable object. Section IV outlines the implementation of the FE–IE DDM
algorithm. The numerical results obtained for the scattering from various inhomogeneous
objects are presented in Section V that illustrate the potential of this technique, whose main
advantages and drawbacks are summarized in Section VI.

II. STATEMENT OF THE PROBLEM AND DDM ALGORITHM

A monochromatic incident plane wave (E
¯

inc, H
¯

inc) illuminates the inhomogeneous body
immersed in free-space.E

¯
andH

¯
designate the electric and magnetic fields, respectively.
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Here, and in the following,H
¯

stands forη0 H
¯
, whereη0 is the free-space impedance.

The assumed (and suppressed) time dependence is exp(iωt), andk = 2π/λ = ω/c is the
wave number of the incident field (c is the light velocity). Without loss of generality,
the Leontovich impedance boundary condition (LIBC) is prescribed upon the surfaceS0

of the scatterer which may be coated by inhomogeneous materials of relative dielectric
permittivity ε and magnetic permeabilityµ that are position dependent 3× 3 tensors. To
alleviate the notations, the dependence of all quantities on the coordinates is generally sup-
pressed. We consider the solution of the following exact scattering problem. FindE

¯
andH

¯
that satisfy, in the unbounded domain exterior toS0, the following set of equations:

∇̄ × [ε−1∇̄ × H
¯
] − k2µH

¯
= 0, ∇̄ · (µH

¯
) = 0, E

¯
= − i

k
ε−1∇̄ × H

¯
(2.1a)

n
¯
× ε−1∇̄ × H

¯
= −ikZH

¯tg on S0 (2.1b)

H
¯
= H

¯
inc+ H

¯
s, E

¯
= E

¯
inc+ E

¯
s (2.1c)

r →∞ : H
¯

s(r, θ, φ) ∼ −e−ikr

r
u
¯r × [u

¯r × H
¯

0(θ, φ)]
(2.1d)

E
¯

s(r, θ, φ) ∼ −e−ikr

r
u
¯r × H

¯
0(θ, φ).

n
¯

designates the outward normal toS0 as well as to all the surfaces that are considered in the
following; (2.1b) is the LIBC, whereZ is the normalized impedance prescribed onS0 and
H
¯tg = −n

¯
× (n

¯
× H

¯
) · (r, θ, φ) are the usual spherical coordinates and u

¯r is the unit radial
vector in this coordinate system.

Now, we recall the DDM algorithm as formulated in [14, 15].Ä is the computational
domain (∂Ä = S0 ∪ S) that includes all the inhomogeneous materials and is partitioned
into N concentric subdomainsÄi , 1≤ i ≤ N. Si−1 andSi denote, respectively, the inner
and outer boundaries ofÄi , andS= SN (see Fig. 1). LetE

¯
`
i , H

¯
`
i be the values of the fields

FIG. 1. “Onion-like” partitioning of the computational domainÄ.
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in Äi at iteratioǹ . They satify Maxwell’s equations inÄi

∇̄ × [ε−1∇̄ × H
¯
`
i

]− k2µH
¯
`
i = 0, ∇̄ · (µH

¯
`
i

) = 0, E
¯
`
i = −

i

k
ε−1∇̄ × H

¯
`
i (2.2)

and the following zeroth order TCs on∂Äi = Si−1 ∪ Si

T−H
¯
`
i = T−H

¯
`
i−1 TC on Si−1 (2.3a)

T+H
¯
`
i = T+

[
α`H¯

`−1
i + (1− α`)H¯

`−1
i+1

]
TC on Si (2.3b)

with α1 = 0, 0≤ α` ≤ 1/2 for ` ≥ 2, and

T±H
¯
= ±ikn

¯
× E

¯
− ikH

¯tg = ±n
¯
× [ε−1∇̄ × H

¯
] − ikH

¯tg (2.4)

ε andµ may be discontinuous on the interfaces. Fori = 1, the LIBC (2.1b) is substituted
to the TC onS0:

n
¯
× ε−1∇̄ × H

¯
`
1 = −ikZH

¯
`
1tg LIBC on S0. (2.5)

The infinite free-space domainR3\Ä is considered as an additional subdomainÄN+1, and
(E
¯
`
N+1, H

¯
`
N+1) denote the fields inÄN+1. If

E
¯

s`
N+1 = E

¯
`
N+1− E

¯
inc

(2.6)
H
¯

s`
N+1 = H

¯
`
N+1− H

¯
inc

then (E
¯

s`
N+1, H

¯
s`
N+1) satisfy Eqs. (2.1a), (2.1d) for all`, with ε = µ = 1. (E

¯
s`
N+1, H

¯
s`
N+1) are

connected to the fields inÄN by (2.3b), wherei = N, and (2.3a), wherei = N + 1 which
reads

T−H
¯
`
N+1 = T−H

¯
`
N . (2.7)

In fact, (2.7) is an inhomogeneous LIBC onSwith Z = 1

−n
¯
× E

¯
s`
N+1− H

¯
s`
(N+1)tg = q

¯
` = n

¯
× E

¯
inc+ H

¯
inc
tg − n

¯
× E

¯
`
N − H

¯
`
Ntg (2.8)

and constitutes the boundary condition onSat iteratioǹ for the IE, defined in Section III,
that relates the values onS of n

¯
× E

¯
s`
N+1 to those ofn

¯
× H

¯
s`
N+1. If the solutions of this

IE are unique andImε ≤ 0, Imµ ≤ 0 in Ä, then lim̀→∞(E¯
`
i ,H¯

`
i ) = (E¯ex,H¯ex) in Äi ,

1≤ i ≤ N + 1, where(E
¯ex,H¯ex) denote the solutions of the original problem (2.1a–d)

[15]. The initial values are chosen to be

H
¯
`=0
i = H

¯
inc 1≤ i ≤ N (2.9)

and we emphasize that the uniqueness and convergence of the DDM algorithm do not
depend on this particular choice. For each value of`, the problemsP`

i , that correspond to
Eqs. (2.2)–(2.8) and to the IE fori = N + 1, are solved successively for increasing values
of i .
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III. INTEGRAL EQUATION FORMULATION

In view of the boundary condition (2.8) satisfied by the IE onS, we have implemented
the IE formulation corresponding to the penalized system (with theβ parameter) proposed
in [18], and outlined in Section III.1 for the DDM. Since this formulation is new and has
never been tested for 3-D problems, we investigate in Section III.2 its numerical efficiency
for the particular case of scattering from a nonpenetrable object of surfaceSon which the
LIBC (2.1b) is prescribed withZ = 1.

III.1. IE Formulation for the DDM

The IE is constituted by the two following, uncoupled,+ and− systems:( 1−β
2 I + D±

4k2 k(K± ± iβ I )

−k
(
K H
± ∓ iβ I

)
2k2β I + D±

)(
X`
±

X
′`
±

)
=
(

g`±
0

)
. (3.1)

I is the identity operator,K H designates the adjoint operator ofK and

X`
± =

(
E
¯

s`
N+1± iH

¯
s`
N+1

)× n
¯ (3.2)

g`± = (q
¯
` ∓ iq

¯
` × n

¯
)/2.

Let8
¯

, 8̃
¯

be tangential vectors toS and(x
¯
, y
¯
), (x, y)∞ designate the following Hermitian

inner products

(x
¯
, y

¯
) =

∫
S

x
¯
∗(r

¯
) · y

¯
(r
¯
) dr

¯
, (x, y)∞ =

∫ π

0
sinθ dθ

∫ 2π

0
x∗(θ, ϕ)y(θ, ϕ)dϕ,

wherex∗ designates the complex conjuguate ofx. The matrix elements of the operatorsK±
andD±, defined in Appendix A, are given by

(8̃
¯
∗
, K±8¯

) = −
∫

S×S
8̃
¯
(r
¯
) · [8

¯
(r
¯
′)× ∇̄r gr (r¯

, r
¯
′)] dr

¯
dr

¯
′ − 1

2

∫
S
8̃
¯
(r
¯
) · [n

¯
(r
¯
)×8

¯
(r
¯
)] dr

¯

∓ k
∫

S×S
8̃
¯
(r
¯
) ·8

¯
(r
¯
′)gr (r¯

, r
¯
′) dr

¯
dr

¯
′

± 1

k

∫
S×S

[∇̄ tg · 8̃¯(r¯)][ ∇̄
′
tg · 8̃¯(r¯

′)]gr (r¯
, r
¯
′) dr

¯
dr

¯
′ (3.3a)

(8̃
¯
∗
, D±8¯

) = (8̃
¯
∗
, δH
± δ±8¯

)∞

(δ±8¯
)(θ, ϕ) = k2

2π
√

2

∫
S
8
¯
(r
¯
) · {[(u

¯θ
± iu

¯ϕ
)n
¯
(r
¯
)] × n

¯
(r
¯
)}e−ikr

¯
·u
¯r dr

¯
(3.3b)

u
¯θ
= (cosθ cosϕ, cosθ sinϕ,−sinθ)t , u

¯ϕ
= (−sinϕ, cosϕ, 0)t

(u
¯

t designates the transpose ofu
¯
) with

gr (r¯
, r
¯
′) = cos(k|r

¯
− r

¯
′|)

4π |r
¯
− r

¯
′| , gi (r¯

, r
¯
′) = sin(k|r

¯
− r

¯
′|)

4π |r
¯
− r

¯
′| .
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The solutionsX`
±, X

′`
± of systems (3.1) are unique if 0< β < 1. Besides, we have

X
′`
± = ∓

i

2k
X`
±. (3.4)

It is important to note that (3.4) holds for the exact, nondiscretized, system (3.1) only. In this
case, the equations corresponding to the second line of (3.1) are equivalent to the EFIE and
MFIE obtained onSwhen taking the limit from the interior ofS, while those corresponding
to the first line of (3.1) result from the incorporation of these IE in the LIBC (2.8).

III.2. Scattering from S with the LIBC(2.1b) and Z= 1

In this section, we solve( 1−β
2 I + D±

4k2 k(K± ± iβ I )

−k
(
K H
± ∓ iβ I

)
2k2β I + D±

)(
X±
X′±

)
=
(g±

0

)
(3.5)

with

X± = (E¯
s ± iH

¯
s)× n

¯
(3.6a)

g± = (q
¯
∓ iq

¯
× n

¯
)/2, q

¯
= n

¯
× (E

¯
inc− n

¯
× H

¯
inc). (3.6b)

The numerical implementation is as follows.S is meshed with triangles andX±, X
′
± are

represented by the standard H(div) edge basis functions [19]. In (3.3a, b), test and basis
functions are identical:̃8

¯
= 8

¯
. The matrix elements ofK± are evaluated using a stan-

dard quadrature rule for nonadjacent triangles, and special care is taken for the integration
of the singularity ingr (r¯

, r
¯
′) [20]. RegardingD±, the integration on the unit sphere in

(8̃
¯
∗
, δH
± δ±8¯

)∞ (see (3.3b)) is carried out by a Gauss–Legendre quadrature rule. Following
[17], (3.5) is solved by first computingX′±, which yields

{k2(K H
± ∓ iβ I )A−1(K± ± iβ I )+ 2k2β I + D±}X′± = k(K H

± ∓ iβ I )A−1g±

X± = A−1[g± − k(K± ± iβ I )X′±] (3.7)

A = 1− β
2

I + D±
4k2

.

The main advantage of this formulation resides in the fact that all the matrices that need to
be inverted, namely [k2(K H

± ∓ iβ I )A−1(K± ± iβ I )+ 2k2β I + D±] and A, are Hermitian
positive definite (if 0<β <1). As a consequence, (3.7) can be solved by using a very
simple double CG: A first one (CG1) to invertA—in fact Ax = b is solved, withA pre-
conditioned by the diagonal—and a second one (CG2) for the solution of (3.7) with no
preconditioning. Note thatAx = b must be solved twice for each iteration of the CG2.
Besides, since systems+ and− are uncoupled, they can be solved successively. First,
matricesD± and K̃±—obtained fromK± by omitting the single integral term in (3.3a)
which is recalculated at each iteration—are real symmetric and computed and stored on
out-of-core binary files. Then,̃K+ andD+ are read on these files, system+ is solved, and
the procedure is repeated for system−. As a result, the memory required for the solution
of (3.5) corresponds to the storage ofK̃+ and D+ (or K̃− and D−), i.e., to the storage
of NS(NS+ 1) real numbers,NS being the number of edges onS. The CG1 is stopped at
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iterationn satisfying

CG1 :‖(Axn − b)/b‖ ≤ r1 (3.8)

(‖ · ‖ is the L2 norm). For the exact solutions of system (3.5), we have the equivalent of
(3.4), namely,

X′± = ∓
i

2k
X±. (3.9)

Let us define the discrepancy, due to discretization, between the l.h.s. and r.h.s. in (3.9) at
iterationn of the CG2 by

1n
± = ‖Xn

± ∓ 2ikX
′n
±‖. (3.10)

For reasons that will be explained in the following, the CG2 is stopped when

CG2 :

∣∣∣∣1− 1n
±

1n−1
±

∣∣∣∣ ≤ r2 (3.11)

We have verified, through various numerical experiments, that the value ofβ (0< β < 1)
has little incidence on the results, and all the calculations presented in this paper have been
carried out withβ = 0.25. The first numerical experiments have been performed at 300 MHz
on a sphere of radius 30 cm. Ifz is directed along an axis of the sphere, the incident field
is given by

E
¯

inc(x, y, z) = V
¯1 expiχ(x, y, z), H

¯
inc(x, y, z) = V

¯2 expiχ(x, y, z)

χ(x, y, z) = k(x sinθ inc cosϕ inc+ y sinθ inc sinϕ inc+ zcosθ inc)
(3.12a)

V
¯1 = (cosθ inc cosϕ inc, cosθ inc sinϕ inc,− sinθ inc)t

V
¯2 = (sinϕ inc,− cosϕ inc, 0)t

for TM polarization and, for TE polarization,

E
¯

inc(x, y, z) = V
¯2 expiχ(x, y, z), H

¯
inc(x, y, z) = −V

¯1 expiχ(x, y, z). (3.12b)

On Fig. 2 is plotted the bistatic RCS vs the angle of observationθ withϕ = 0 (θ inc=ϕ inc= 0)

RCS(θ) = 10 log
[

lim
r→∞4πr 2|E

¯
s(r, θ, ϕ = 0)|2

]
computed from the Mie series (exact RCS), the values ofX± on S (RCS) and those ofX′±
(RCS′) for two values ofr1, r2. Notice that RCS and RCS′ are polarization independent
since system (3.5) is invariant under the transformationW : (E

¯
s,H

¯
s) 7→ (−H

¯
s,E

¯
s). The

RCSs computed from (3.5) are in excellent agreement with the exact one:NS = 1638, and
the average length of the edges,¯̀edge

S , is λ/20. Also, Fig. 2 plotsrCG2

rCG2= ‖Cxn − b‖,

whereC and b represent, respectively, the matrix and the r.h.s. of the first equation in
(3.7), and1n

− vs the numbern of CG2 iterations (both+ and− systems behave very
similarly). We observe that1n

− reaches a plateau that corresponds to the discretization
error (see Appendix A). Decreasingr1 andr2 does not change the value of1n

−: this is the
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FIG. 2. Sphere withZ = 1. IE formulation withθ inc = 0. Left: RCS vs the angle of observationθ . Right:
rCG2 and1n

− vs the number of CG2 iterations.

reason we have chosen (3.11) as the stop criterion for the CG2, rather than the residual
errorrCG2. However, it does increase the RCS accuracy in the vicinity ofθ = 0 (see Fig. 2).
This observation, in apparent contradiction with the previous statement, comes from the
fact that the backscattered far-field is identically zero for an object withZ = 1, illuminated
in axial incidence and invariant by a rotation ofπ/4 around the axis [21]. Since (3.5) is
invariant under the transformationW, RCS(θ = 0) = −∞ for the solutions of (3.5) obtained
when r1 = r2 = 0 if the mesh of the sphere has the proper symmetry, independently of
the discretization error. Similar comments can be made regarding the results obtained at
500 MHz on the cone-sphere corresponding to surfaceS1 in Fig. 5—total length 2.2 m, back-
sphere radius 0.4 m, round tip radius 0.1 m, andNS = 13179 (̄̀ edge

S = λ/20)—in axial, on
tip incidence (θ inc = ϕ inc = ϕ = 0): see Fig. 3 that plots also the reference RCS computed
with a MoM code for bodies of revolution (BORs) [22] (the exact RCS is polarization
independent). The plots ofrCG2 and1n

− vs n for both the cone sphere and the former
sphere at 300 MHz displayed in Fig. 3 show that the plateau of1n

− and the number of CG2
iterations are similar for both geometries. The same conclusion holds true for the CG1: the
number of CG1 iterations required to solve one of the two systemsAx = b for a given CG2
iteration number comprises between 3 and 4. Calculations performed at various frequencies
on the same meshes have confirmed that, for fixed values ofr1 andr2, the minimum of1n

±,

as well as the number of CG2 iterations, depend on¯̀edge
S rather than on the shape ofS,

while the number of CG1 iterations remains fairly constant.1n
± decreases and the number

of CG2 iterations increases when the calculation frequency decreases. An important and,
as far as we know, unique feature of this IE formulation is that the value of the plateau
reached by1n

± constitutes an indicator of the accuracy with which the problem has been
solved.
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FIG. 3. Cone-sphere withZ = 1. IE formulation withθ inc = 0. Left: RCS vsθ . Right: rCG2 and1n
− vs the

number of CG2 iterations for the cone-sphere and the sphere of Fig. 2.

IV. IMPLEMENTATION OF THE FE–IE DDM ALGORITHM

Regarding the FE region (1≤ i ≤ N), we proceed exactly as in [14]: Each subdomainÄi

is meshed with tetrahedrons, first-order edge-basis functions are employed and a Galerkin
procedure is used. The basis functions are compatible with those used onS for the IE
(8

¯
= n

¯
× h

¯
if h

¯
designates a FE basis function). Then, we solve successively the following

systems

Ai H
`
i = b`i (4.1a)

that result from the discretization of the variational formulation∫
Äi

{
(∇̄ × H̃

¯
) · ε−1

(∇̄ × H
¯
`
i

)− k2
0 H̃

¯
· µH

¯
`
i

}
dÄ+ ik

∫
Si−1

H̃
¯ tg · H¯

`
i tg dS

+ ik
∫

Si

H̃
¯ tg · H¯

`
i tg dS= b`i (4.1b)

(Ai is symmetric) with

i = 1 :b1
1 = −

∫
S1

H̃
¯ tg · T+H

¯
inc dS

(4.2a)
` ≥ 2 :b`1 = b`−1

1 + 2ik(1− α`)
∫

S1

H̃
¯ tg ·

(
H
¯
`−1
2tg − H

¯
`−1
1tg

)
dS.

2≤ i ≤ N : b1
i = −

∫
Si

H̃
¯ tg · T+H

¯
inc dS+

∫
Si−1

H̃
¯ tg · T+H

¯
incdS

+ 2ik
∫

Si−1
H̃
¯ tg · H¯

1
(i−1)tgdS
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` ≥ 2 : b`i = b`−1
i + 2ik(1− α`)

∫
Si

H̃
¯ tg ·

(
H
¯
`−1
(i+1)tg− H

¯
`−1
i tg

)
dS

+ 2ik
∫

Si−1
H̃
¯ tg ·

[
H
¯
`
(i−1)tg− H

¯
`−1
i tg + α`

(
H
¯
`−1
i tg − H

¯
`−1
(i−1)tg

)]
dS. (4.2b)

For the last subdomain (i = N), we computeH
¯
`−1
(N+1)tg from the arithmetical mean ofX`−1

±
andX

′`−1
± on account of (3.2) and (3.4)

H
¯
`−1
(N+1)tg = H

¯
inc
tg +

i

4
n
¯
× [X`−1

− − 2ikX
′`−1
− − (X`−1

+ + 2ikX
′`−1
+ )]. (4.3)

Regarding the IE in (3.1), the r.h.s.g`± is computed recursively from its definition in (3.2)
by using the TCs onS. We get

` = 1 : g1
± = H

¯
inc∓ iH

¯
inc× n

¯
− (H

¯
1
Ntg∓ iH

¯
1
N × n

)̄
(4.4a)

`≥ 2 : g`± = g`−1
± + (1− α`)(H¯

inc∓ iH
¯

inc× n
¯
)− (H

¯
`
Ntg∓ iH

¯
`
N × n

)̄
+α`

(
H
¯
`−1
Ntg∓ iH

¯
`−1
N × n

)̄+ 1−α`
2

[∓(X`−1
+ − X`−1

− )

− in
¯
× (X`−1

+ − X`−1
− )]. (4.4b)

For each polarization TM or TE of the incident wave, and for a given value of`, we
proceed as follows:

• 1≤ i ≤ N: ComputeAi and solve (4.1a) using a CG (the initial solution isH `−1
i );

stop the CG when ∥∥Ai H
`
i − b`i

∥∥ ≤ εCG. (4.5)

• i = N + 1: ComputeK̃±, D± and write the values on out-of-core binary files (for
` = 1 only). ReadK̃−, D− and solve system− of (3.1), readK̃+, D+ and solve system+
(the initial solutions for the CG2 areX`−1

± , X
′`−1
± ); the stop criteria of the CGs are those

defined in Section III.2.

The DDM algorithm is stopped for the smallest valueL of ` satisfying∥∥H L+1
1 − H L

1

∥∥ ≤ 3εCG. (4.6)

The IE systems in (3.1) are solvedL times.

V. NUMERICAL RESULTS

The results that are presented in this section have been obtained on a sphere, a cone-
sphere, a “stopper,” and the air intake defined in [8] (“channel”). The first three objects are
inhomogeneous BORs. No symmetry is taken into account, and fully 3-D meshes are used.
For the sake of simplicity,ε andµ are scalar and assumed to be constant in each subdomain:
εi andµi designate the values ofε andµ in Äi , 1≤ i ≤ N. The relaxation parameterα`,
as defined in Section II, is chosen at random at each iteration. All the RCSs that have been
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computed are bistatic withϕ inc = ϕ = 0. A hybrid FE–CFIE code for BORs [3] serves as
a reference for the BORs and a 3-D MoM code [23] for the channel. The calculations are
performed on one processor only of a Cray T90. Sections V.1 to V.4 are devoted to the
results that have been obtained on each of these four objects.

V.1. Sphere

The radius of the sphere is 25 cm, and the subdomains are spherical shells: The radii ofS1,
S2, andS3 = Sare 30, 34, and 37 cm, respectively. The calculation frequency is 300 MHz.
Z = 1 in (2.5), N = 3, andεi = µi , 1≤ i ≤ 3, with ε1 = 2, ε2 = 0.71(1− i ), andε3 =
(1− i )/2, so that the conditions of applition of Weston’s theorem [21] are satisfied. Since the
FE formulation (4.1b) is not invariant under theW transformation,this particular choice
of the parameters constitutes a severe test for numerical accuracy. The RCS calculated
with r1 = r2 = εGC = 10−6 is compared to the exact one computed with the Mie series on
Fig. 4: the average length of the edges in all of the subdomains,¯̀edge

V , is equal toλ/20, and
¯̀edge

S = λ/20. Also, we verify that the DDM does converge on Fig. 4 that plots

er1(`) =
∥∥H `

1 − H `−1
1

∥∥
vs the number̀ of DDM iterations, (L = 163), andrCG2, 1n

− for system− of (3.1)—
system+ behaves very similarly—vs the total number of CG2 iterations. Note that the last
quantities show peaks for each new value of`. Although not shown here, a calculation

FIG. 4. Sphere with a three layer coating andZ = 1, N = 3. εi = µi , 1≤ i ≤ 3, θ inc = 0, andr1 = r2 =
εGC = 10−6. Top: RCS vsθ . Bottom:er1 vs the number̀ of DDM iterations andrCG2,1n

− vs the total number of
CG2 iterations.
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performed withr1 = r2 = εGC = 10−2 yields the same values for the RCS, but with a much
smaller number of DDM iterations (L = 6).

V.2. Cone-Sphere

It is identical to the one defined in [14]: The total length of the object is 2 m, the radius of
the sphere is 30 cm, and the tangent is continuous at the junction between the sphere and the
cone (see sketch on Fig. 5).N = 3, the interfaces conform toS0, and the distancesdi separat-
ing them are, for increasing values ofi , 10, 8, and 6 cm, so thatS is placed 24 cm away from
S0. The calculation frequency is 500 MHz, and the characteristics of the meshes are the fol-
lowing (Nel

i andNun
i denote the number of elements and unknowns in subdomainÄi , respec-

tively): Nel
1 = 75358,Nun

1 = 98534,¯̀edge
V = λ/22; Nel

2 = 60437,Nun
2 = 82337,̄̀ edge

V = λ/17;
Nel

3 = 25945,Nun
3 = 39450,¯̀edge

V = λ/13; NS= 7950, ¯̀edge
S = λ/12.z

¯
is the axis of the cone

illuminated in axial, on tip, incidence (θ inc=ϕ inc= 0).
The first results have been obtained withZ= 0—perfectly electric conducting (PEC)

cone-sphere—ε1= 1.4(1− i ), µ1= 1, ε2= 1− i , µ2= (1− i )/2, ε3= 2,µ3= (1− i )/4,
εGC= 10−2, r1= 10−3, andr2= 10−2. L = 7 and the ratio of the number of CG iterations—
relative to the solution of the FE systems (4.1a)—to the number of unknowns comprises
between 7.10−4 and 5.10−3. The total number of CG2 iterations for one of the two systems
in (3.1) is 92, with an average of 6 CG1 iterations per CG2 iteration. OnceD±, K̃± are
computed, the total CPU time for one polarization is 4000 s, of which 1800 s for the FE
systems (4.1a) (we recall that theAi matrices are recomputed for each`). As an indication,
the total memory storage is 80 M words (double precision arithmetic is the standard on
CRAY T90, so that 1 word= 8 bytes). The IE formulation alone requiresN2

S = 63 M
words. RCS, RCS′, and the reference RCS are plotted on Fig. 6 which also displays1n

−,
rCG2, ander1(`).

On account of the widely admitted rule of thumb requiring that¯̀edge
V ' λ/(10|ν|) for a

given subdomain, whereν = √εµ is the optical index of the medium, a large index implies
a large value ofNS if S is the interface between the material and the surrounding free-space,
and much larger computer resources are required for the solution of (3.1) than ifS is located
in free-space with̄̀ edge

S ' λ/10. Consequently, inserting one or several free-space subdo-
mains allows a reduction of these resources. A computation performed at 500 MHz with
N = 3, Z = 1,ε1 = µ1 = 2,ε2 = µ2 = ε3 = µ3 = 1, andεGC = r1 = r2 = 10−2 (L = 11,
total number of CG2 iterations equal to 155 with an average of 4 CG1 iterations per CG2
iteration) shows that we get an accuracy for the RCS similar to the one achieved in the
previous calculation (see Fig. 7). Compared with a computation performed with subdomain
Ä1 alone (N= 1), the memory storage is reduced by a factor 2.2, approximately equal to
(NS1/NS3)

2= (13179/7950)2, on account of the fact that the memory required to solve the

FIG. 5. Cone-sphere: Geometry and domain partitioning.



DOMAIN DECOMPOSITION METHOD 463

FIG. 6. Cone-sphere with a three layer coating andZ= 0, N= 3, θ inc= 0. Top: RCS vsθ . Bottom:er1 vs the
number̀ of DDM iterations andrCG2,1n

− vs the total number of CG2 iterations.

FIG. 7. Cone-sphere with a monolayer coating andZ= 1, N= 3,θ inc= 0. Free-space inÄ2 ∪Ä3. IE or ABC2
on S.
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FIG. 8. Stopper: Geometry and domain partitioning.

largest of the FE systems in (4.1b) is small compared to the one required to solve the IE
systems in (3.1). Another way to reduce the computational complexity is to implement on
S3= S the second-order conformal ABC [24] (termed ABC2) as in [14] withN= 3. We
observe on Fig. 7 that the accuracy of the RCS thus computed (L = 9) is similar to the one
achieved with the IE and the memory storage is divided by 8 and the CPU time by 3 (the
distance betweenS0 andS3 is equal toλ/2.5).

V.3. Stopper

Stopper is sketched on Fig. 8: total length 1 m, radius of the hemisphere 30 cm. Four
subdomains are used.S1, S2, S3 are partially concave and present sharp edges. Because we
will also implement the ABC2 onS= S4, S has a bevelled edge. One of the reasons that
has motivated the calculations presented in this section was to verify that partially concave
interfaces with singularities had no impact on the behavior of the algorithm, as it has al-
ready been done in [13] for the 2-D case. The distancesdi separating the interfaces are, for
increasing values ofi , 5, 4, 3, and 2 cm. The characteristics of the meshes are the follow-
ing: Nel

1 = 59753,Nun
1 = 82277,¯̀edge

V = λ/25; Nel
2 = 22367,Nun

2 = 35383,¯̀edge
V = λ/17;

Nel
3 = 14465, Nun

3 = 23995, ¯̀edge
V = λ/17; Nel

4 = 16638, Nun
4 = 26089, ¯̀edge

V = λ/13;
NS = 6171, ¯̀edge

S = λ/13. The computational frequency is 500 MHz,Z = 1, εGC = r1 =
r2 = 10−2, andεi = µi , 1≤ i ≤ N = 4.

The first results have been obtained withε1 = 1− i , ε2 = 2, ε3 = 0.71(1− i ), andε4 =
(1− i )/2. Figure 9a plots the RCS computed in normal incidence on the cylindrical part
(θ inc = 900): L = 8, and the total number of CG2 iterations for one IE system is 154. Despite
the large dynamic range of the RCS, the DDM achieves a reasonable accuracy. Note that
the exact RCS is polarization independent. This is verified by the FE–CFIE formulation
for BORs used as a reference since it is invariant under theW transformation, contrary
to the DDM formulation. Another calculation is performed under the same incidence with
ε1 = 0.71(1− i ), ε2 = ε3 = ε4 = 1 (see Fig. 9b):L = 12 and the total number of CG2
iterations for one IE system is equal to 263. Also, are plotted on Fig. 9b the RCSs computed
with N = 4 and the ABC2 onS. We observe that the IE provides a noticeable increase of
the accuracy. Note that the distance (λ/6.7) betweenSandS0 is small for the ABC.

V.4. Air Intake (“Channel”)

The geometry is an evolutive channel enclosed in a circular cylinder of axisz, length
1.365 m, and radius 0.147 m. The entry of the channel has an elliptic cross-section, and
the closed end has a circular cross-section (see Fig. 10). We refer to [8] for additional
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FIG. 9. Stopper withZ = 1, N = 4, εi = µi , 1≤ i ≤ 4, andθ inc = 900. Left: Four layers coating and IE on
S. Right: Monolayer coating and free-space inÄ2 ∪Ä3 ∪Ä4. IE or ABC2 onS.

information on the geometry (note that the definition of thex, y, z axes differs from the one
in [8]). The object is perfectly conducting (Z = 0). The wave is obliquely incident on the
entry of the channel withθ inc = 300, and the computational frequency is 1.1 GHz.

To minimizeNS, we have enclosed the channel in a cylinder of axisz whose surfaceS1

is placed as close as possible to the exterior surface of the object: The distance betweenS0

andS1 is 5 mm (see Fig. 10).N = 1 (S1 = S) and the length of the edges in the volume
mesh ofÄ1, constituted of free-space, varies fromλ/15 onS0 toλ/11 onS1: Nel

1 = 54899,
Nun

1 = 80592,NS = 8682, and the memory storage is 84 M words. The RCS is computed
from the DDM+ IE with εGC = r1 = r2 = 10−2 and a MoM code [23] using the EFIE

FIG. 10. Channel: Geometry and domain partitioning.
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FIG. 11. Channel,θ inc = 300, Z = 0, and free-space inÄ1. DDM+ IE: N= 1 and IE onS= S1. DDM+
ABC2: N= 2 and free space inÄ2; ABC2 onS= S2.

on S0 with the same surface mesh (24.087 edges) than in the volume mesh. Both are
plotted on Fig. 11. In TM polarization, we observe that the MoM and DDM+ IE results
are superimposed while, in TE, they differ in the vicinity of thez axis (θ = 00). We may
explain this as follows. The first cavity mode is not excited in TM (E

¯
inc is parallel to the

major axis of the elliptical aperture). As a consequence, the field does not enter the channel
and the air intake behaves essentially like a closed PEC cylinder. Conversely, this mode is
excited in TE (E

¯
inc is parallel to the minor axis of the ellipse), the field enters the channel

and reradiates through the aperture. In this case, it is well known (see, e.g., [25]) that a high
numerical accuracy is necessary to properly model the field propagation inside the duct, and
low-order elements are used in the present FEM. A noticeable characteristic of the DDM
calculation is the high value ofL (L = 18). This may be due to the very small distance
separatingSandS0: Like the ABC from which it is derived, the TC is all the more efficient
as the surface on which it is implemented is situated far away fromS0 [13]. Also, the CG
used to solve the FE system (4.1a) converges more slowly than in the previous cases, on
account of the losseless cavity andZ = 0: The ratio of the number of CG iterations to the
number of unknowns comprises between 3.10−3 and 5.10−2. However, it is important to
note that the solutions to the IE systems remain unaffected by the cavity: The total number
of CG2 iterations for one of the two systems in (3.1) is 220, with an average of 4 CG1
iterations per CG2 iteration.

Then, we have added another subdomainÄ2 (see Fig. 10) on the boundaryS2 of which is
implemented the ABC2.S2 is conform toS1—except for the edges that have been rounded—
and its distance fromS0 is equal to 0.125 m= λ/2.2; Nel

2 = 140317,Nun
2 = 183322, and

¯̀edge
V = λ/13. The RCSs computed withN = 2 (S2 = S) andεGC = 10−2 (L ′ = 16) are

also plotted on Fig. 11, and the accuracy achieved is reasonably good. Compared with
the DDM+ IE calculation, the memory storage and CPU time are divided by 4 and 1.4,
respectively.
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VI. CONCLUSIONS

We may consider that the numerical results presented in this paper validate the hybrid
FE–IE DDM proposed in [15] for the scattering by inhomogeneous 3-D objects. The main
advantages offered by this technique are the following.

(1) All the linear systems that are solved in the DDM algorithm possess unique solutions.
(2) These solutions converge to those of the original problem ifIm(ε) ≤ 0, Im(µ) ≤ 0.
(3) Each of the FE and IE systems are solved separately, thus reducing the complexity

of the original problem:

—Regarding the FE region, the interface between the subdomains may be located
anywhere, may include concave parts, and may present surface singularities. The memory
storage isO(Nel

max), and the convergence of the CG used to solve the FE systems is ac-
celerated thanks to the lossy boundary conditions (TCs). As an example, a large problem
involving more than 1.3 · 106 elements and 1.6 · 106 unknowns has been easily solved on
one processor of a CRAY T90 with a storage of 53 M words [14].

—Regarding the particular IE formulation employed in this paper, all the matrices
that are inverted are Hermitian positive definite, thus allowing the use of a very simple
double CG. Both systems in this formulation are solved separately, leading to the storage
of NS(NS+ 1) real numbers. The numerical results have displayed a threshold for the
discrepancy between the l.h.s. and r.h.s. in identity (3.9), due to the discretization error and
beyond which it is, most of the time, unecessary to carry on with the iterations. The value of
this threshold constitutes an indicator of the accuracy with which the IE systems are solved.
These characteristics remain unchanged when the IE formulation is coupled to the FEM
through the DDM. The numerical experiments have shown that the total number of CG2
iterations is of the order ofL × nGC2(` = 1)/2, on account of the fact that the solutions
computed at iteration(`− 1) are used as initial solutions for iteration`.

—As a result, for an electrically large object, the memory storage required by this
hybrid method corresponds, essentially, to the storage ofN2

S real numbers and can be
further reduced if the fast multipole algorithm is implemented [26, 27]. Also, the numerical
experiments have validated the fully iterative procedure that has been employed in this paper
for the solution of this DDM algorithm. Obviously, iterative solvers more sophisticated than
the very simple CGs implemented here should be experimented with, but this is beyond the
scope of this paper.

The main drawback of this technique resides in the fact that the IE systems must be
solvedL times.L increases whenN increases:L > N, otherwise the solution inÄ1 remains
unaffected by the spurious reflections due to the TC onSN [14]. Also, L increases when
the innermost interfaceS1 is close to the surface of the object, as it has been described in
Section V.4, or when weakly attenuated surface waves are present on one of the interfaces
Si , on account of the low efficiency of the TC for waves in grazing incidence [13]. For the
latter case, a trivial remedy consists in movingSi . For instance, if strong creeping waves
are propagating on the outermost surface of the materials coating the object, a free-space
region can be inserted into the last subdomain between this surface and the surfaceSN = S
terminating the computational domain. As a general rule, it has been found thatL is on the
order of 10 whenN ≤ 4 (see also [14]).

Lastly, let us mention that the second-order conformal ABC proposed in [24] constitutes
a cheap and memory-efficient, although less accurate, alternative to the IE, that has proved
to be interesting for some applications.
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APPENDIX A

First, we define the operatorsK± and D±. Then, we show that identity (3.9) is exactly
satisfied when the discretization error goes to zero.

K± andD± are defined by

K±8¯
(r
¯
) = ∇̄ ×

∫
S
8
¯
(r
¯
′)gr (r¯

, r
¯
′) dr

¯
′ ∓ 1

k
∇̄ × ∇̄ ×

∫
S
8
¯
(r
¯
′)gr (r¯

, r
¯
′) dr

¯
′ − 1

2
n
¯
(r
¯
)×8

¯
(r
¯
)

(A1a)

D±8¯
(r
¯
) = 2k2

{
∓∇̄ ×

∫
S
8
¯
(r
¯
′)gi (r¯

, r
¯
′) dr

¯
′ + 1

k
∇̄ × ∇̄ ×

∫
S
8
¯
(r
¯
′)gi (r¯

, r
¯
′) dr

¯
′
}
. (A1b)

In the following,ε denotes the discretization error, and quantities with the subscriptε

designate discretized quantities. Let us define by1ε± the discrepancy to identity (3.4)

X′ε± = ∓
i

2k
Xε± + 1ε±

2k
. (A2)

The second equation of the discretized system (3.1) reads

−k
(
K H
ε± ∓ iβ I

)
Xε± + 2k2βX′ε± + Dε±X′ε± = 0.

Substituting toX′ε± the definition (A2) yields

−K H
ε+Xε+ + β1ε+ − i

2k2
Dε+Xε+ + 1

2k2
Dε+1ε+ = 0

−K H
ε−Xε− + β1ε− + i

2k2
Dε−Xε− + 1

2k2
Dε−1ε− = 0.

Adding or substracting the two above equations, we get

−(K H
ε+Xε+ + K H

ε−Xε−
)− i

2k2
(Dε+Xε+ − Dε−Xε−)+ β(1ε+ +1ε−)

+ 1

2k2
(Dε+1ε+ + Dε−1ε−) = 0 (A3a)

i
(
K H
ε+Xε+ − K H

ε−Xε−
)− 1

2k2
(Dε+Xε+ + Dε−Xε−)− iβ(1ε+ −1ε−)

− i

2k2
(Dε+1ε+ − Dε−1ε−) = 0. (A3b)

On the other hand, if (E
¯

s, H
¯

s) designates the exact scattered field solution of the problem
considered in Section III.2, let us define the field (Ẽ

¯
s, H̃

¯
s) for r

¯
∈ R3\Sby

Ẽ
¯

s
(r
¯
) = −∇̄ ×

∫
S
(E
¯

s × n
¯
)(r

¯
′)g(r

¯
, r
¯
′) dr

¯
′ + i

k
∇̄ × ∇̄ ×

∫
S
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¯
s × n

¯
)(r

¯
′)g(r

¯
, r
¯
′) dr

¯
′

H̃
¯
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¯
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∫
S
(H

¯
s × n

¯
)(r

¯
′)g(r

¯
, r
¯
′) dr

¯
′ − i

k
∇̄ × ∇̄ ×

∫
S
(E
¯

s × n
¯
)(r

¯
′)g(r

¯
, r
¯
′) dr

¯
′
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with

g(r
¯
, r
¯
′) = gr (r¯

, r
¯
′)− igi (r¯

, r
¯
′).

We know thatẼ
¯

s
(r
¯
) = E

¯
s(r

¯
), H̃

¯
s
(r
¯
) = H

¯
s(r

¯
) for r

¯
in the exterior ofS, andẼ

¯
s
(r
¯
) = H̃

¯
s
(r
¯
) =

0 for r
¯

in the interior ofS. As a consequence, ifr
¯
− = limα→ 0+ (r

¯
− αn

¯
), r

¯
∈ S, we have

Ẽ
¯

s
(r
¯
−) = −∇̄ ×

∫
S
(E
¯

s × n
¯
)(r

¯
′)g(r

¯
, r
¯
′) dr

¯
′

+ i

k
∇̄ × ∇̄ ×

∫
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¯
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¯
)(r

¯
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¯
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¯
′) dr

¯
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¯
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¯
× E

¯
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¯
) (A4a)
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¯
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¯
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)(r

¯
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¯
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¯
′) dr

¯
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¯
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¯
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¯
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¯
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) (A4b)

and

Ẽ
¯

s
(r
¯
−) = H̃

¯
s
(r
¯
−) = 0. (A4c)

For the discretized field (E
¯

s
ε , H

¯
s
ε) solution of the discretized system (3.5), we have, from the

definition in (3.6a)

Xε± =
(
Ẽ
¯

s
ε ± iH

¯
s
ε

)× n
¯
.

Then, it is easy to show from (A1a, b), (A4a, b) that

−(K H
ε+Xε+ + K H

ε−Xε−
)− i

2k2
(Dε+Xε+ − Dε−Xε−) = 2Ẽ

¯
s
ε(r¯
−)

i
(
K H
ε+Xε+ − K H

ε−Xε−
)− 1

2k2
(Dε+Xε+ + Dε−Xε−) = 2H̃

¯
s
ε(r¯
−)

and (A3a, b) can be written as

Ẽ
¯ε
(r
¯
−)+ β

2
(1ε+(r¯

)+1ε−(r¯
))+ 1

4k2
[(Dε+1ε+)(r¯

)+ (Dε−1ε−)(r¯
)] = 0

H̃
¯ε
(r
¯
−)− iβ

2
(1ε+(r¯

)−1ε−(r¯
))− i

4k2
[(Dε+1ε+)(r¯

)− (Dε−1ε−)(r¯
)] = 0.

Combining the two above equations, we get

β1ε+(r¯
)+ 1

2k2
(Dε+1ε+)(r¯

) = −(Ẽ
¯ε
(r
¯
−)+ i H̃

¯ ε
(r
¯
−))

β1ε−(r¯
)+ 1

2k2
(Dε−1ε−)(r¯

) = −(Ẽ
¯ε
(r
¯
−)− i H̃

¯ ε
(r
¯
−)).

Finally, performing the Hermitian inner product of the first (respectively second) equation
by1ε+ (respectively1ε−) and using the first identity in (3.3b), we arrive at

β‖1ε+‖2+ 1

2k2
‖δε+1ε+‖2∞ = −(1ε+, Ẽ

¯ε
(r
¯
−)+ i H̃

¯ ε
(r
¯
−))

(A5)

β‖1ε−‖2+ 1

2k2
‖δε−1ε−‖2∞ = −(1ε−, Ẽ

¯ε
(r
¯
−)− i H̃

¯ ε
(r
¯
−)).
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On account of (A4c), limε→0 Ẽ
¯

s
ε(r¯
−) = H̃

¯
s
ε(r¯
−) = 0 and, since 0< β < 1, (A5) shows that

the values of1ε+,1ε− go to zero when the discretization error goes to zero.
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électromagn´etique par des objets 3D conducteurs recouverts ou non de mat´eriaux,Proceedings of the Journées
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